

IEC TR 61850-90-30

Edition 1.0 2025-03

TECHNICAL REPORT

Communication networks and systems for power utility automation – Part 90-30: IEC 61850 Function Modelling in SCL

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.200 ISBN 978-2-8327-0068-6

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

Ε(DREWC	PRD	11
IN	TRODU	JCTION	13
1	Scop	ıe	14
	1.1	General	
	1.2	Published versions of this standard and related namespace name	
	1.3	Identification of the Code Components	
	1.3.1	·	
	1.3.2	IEC 61850-6-100 XML namespace compliant with IEC 61850-6:2024 edition 2 amendment 2	16
	1.3.3		
	1.4	Code Component Distribution	16
	1.4.1	General	16
	1.4.2	SCL extension namespace code component	17
	1.4.3	SSD example code component	17
2	Norn	native references	17
3	Term	is and definitions	18
4		tions and Applications	
•	4.1	General	
	4.2	Functions	
	4.2	Application Schemes	
	4.4	Examples of Functions and Applications	
	4.4.1	·	
	4.4.2		
	4.4.3	• •	
	4.4.4	• •	
	4.4.5	• •	
5	_	extension representation concepts	
•	5.1	General	
	5.1	PathName	_
	5.2	SCL Location	
	5.4	Condition for attribute presence	
6		Flow inside and between Functions	
U			
	6.1	General	
	6.2	Data Flow	
	6.2.1 6.2.2		
	6.2.2		
	6.2.4		
	6.2.5		
	6.3	Data flow resolution	
	6.3.1		
	6.3.1		
	6.3.3		
	6.3.4		
	6.4	Service-related Elements	
	6.4.1		
	0.4.1	opedoei vide i ype	30

	6.4.2		ServiceSpecifications	40
7	LNod	le Da	ta specification	53
	7.1	SCL	Location	53
	7.2	Gen	eral	53
	7.3	Spe	cification of Data Objects and Attributes	53
	7.3.1	·	General	53
	7.3.2		DOS/SDS/DAS Definition	53
	7.4	LNo	de Mapping Documentation	57
8	LNod	leSpe	ecNaming	58
	8.1	SCL	Location	58
	8.2		nition	
9	Proce	essR	esource	60
	9.1		Location	
	9.2		nition	
	9.3		representation	
	9.3.1		General	
	9.3.2		ProcessResources	
	9.3.3		ProcessResource	
	9.3.4		Resource	
10			temRelation	
	10.1	-	Location	
	10.2		nition	
	10.3		representation	
	10.3.		General	
	10.3.		PowerSystemRelations	
	10.3.		PowerSystemRelation	
11			ents reference and categorisation	
•	11.1		eral	
	11.2		ction Reference	
	11.2.		General	
			FunctionRef	
	11.2.		FunctionCatRef	
			ctionCategory	
	11.3.		SCL Location	
	11.3.		General	
	11.3.		SCL representation	
			cation Role	
	11.4.		SCL Location	
	11.4.		Definition	
	11.4.		Example 1	
	11.4.		Example 2	
	11.4.		Example 3	
12				
	12.1		Location	
	12.1		nition	
	12.2		representation	
	12.3		General	
				84
	14.0	_	V ULIUNIO	J→

•	12.3.3	VariableApplyTo	85
13 I	Behavio	or description	88
13	3.1 S	CL Location	88
13	3.2 D	efinition	88
13	3.3 S	CL representation	89
	13.3.1	General	89
	13.3.2	BehaviorDescription	89
	13.3.3	InputVar and OutputVar	91
	13.3.4	IEC 61131 BehaviorDescription use cases	93
14 I	Proces	s Echo	95
14	.1 S	CL location	95
14	.2 D	efinition and rules	95
14	.3 U	se cases	96
•	14.3.1	Use case 1: circuit breaker position transmission	96
•	14.3.2	Use case 2: measurement transmission	97
15 E	Bay Ty _l	oe	98
15	5.1 S	CL location	98
15	5.2 D	efinition	98
16	Specific	cation Workflow, tools and file types	98
16	6.1 F	SD	98
	16.1.1	Definition and rules	
	16.1.2	SCL content	99
	16.1.3	FunctionTemplate	99
	16.1.4	Usage	100
16	6.2 S	SD Template	101
16	3.3 S	·IED	101
	16.3.1	General	101
	16.3.2	Logical Node and Function Allocation	101
•	16.3.3	S-IED as formal Specification	102
•	16.3.4	S-IEDs for Testing and Simulation	102
•	16.3.5	S-IED identification inside an SCL file	103
•	16.3.6	From Functional Specification to the S-IED	103
•	16.3.7	ISD	104
16	6.4 P	ocess SCL files	
	16.4.1	General	
	16.4.2	Process ICD	
	16.4.3	Process IID	
	16.4.4	Instantiating a process ICD/IID in an SCD – Implementation rules	
	16.4.5	Documenting the implementation of the IED to the specification	
		ngineering Rights applied to functions	
	16.5.1	Definition	
	16.5.2	Rules from IEC 61850-6	
	16.5.3	The SCC file format	
	16.5.4	The project ID	
	16.5.5	The checkout ID	
	16.5.6	Combining SCC and SED workflows	
	16.5.7 16.5.8	Additional example adding SCL references	144 146
		USE 1/43E3	IΔN

	16.5	.9	Rules regarding engineering rights on process section elements	150
	16.6	Info	rmation flow between tools	151
	16.6	.1	General	151
	16.6	.2	Response of a process ICD to a system specification or IED specification template	
	16.6	.3	Response of a process IID to a project SCD	151
	16.6	.4	Response of a process IID to a project specific ISD/SSD	
	16.6	.5	Response of a process ICD to an SSD with allocation roles	152
	16.6	.6	Global overview of tools and interfaces	152
17	ScIF	ileRe	ferences extension	153
	17.1	Ger	neral	153
	17.2	Use	of the SclFileReference for FSD	154
	17.3	Use	of SclFileReference for ASD	154
	17.4	Use	of other references	155
	17.4	.1	General	155
	17.4	.2	SclFileReference for SSD in ISD	155
	17.4	.3	SclFileReference for ISD in ICD	156
	17.4	.4	SclFileReference for ISD in SCD	156
	17.4	.5	SclFileReference for ISD in IID	156
	17.4	.6	SclFileReference for ICD in IID	
	17.4	.7	SclFileReference for ICD in SCD	
	17.4	.8	SclFileReference for IID in SCD	
	17.4	.9	SclFileReference for SCD in IID	
	17.4	.10	SclFileReference for SSD in SCD	
	17.4		SclFileReference for SCD in SED/SCC	
	17.4		CheckoutID from SED/SCC in SCD/SED/SCC	
	17.4		SclFileReference for SSD in ICD	
	17.4		SclFileReference for IID in SSD	
	17.4		SclFileReference for SSD in SSD	
18	UUII			
	18.1		neral	
	18.2		nario 1:	
	18.2		General	
	18.2		Subscenario 1: zoom on ASD	
	18.2		Subscenario 2: creating the project SSD	
	18.2		Subscenario 3: creating the process ICD	
	18.2		Subscenario 4: creating SCD	
			er examples	
	18.3		General	
	18.3		Scenario 2	
۸	18.3		Scenario 3	
		•	mative) Predefined Function classifications	
	A.1		rview	
	A.2		ic Function Categories	
	A.3		tection	
	A.4		omation	
	A.5		ended Function Categories	169
	4 P		CHAIL SCANA	וואון

Annex B (informative) Service section rules for ISD files service section rules for ISD files	170
Annex C (informative) Management of different Schema version	180
C.1 General	
C.2 Upgrading rules from 2019B9 to 2019C1	
C.3 Downgrading rules from 2019C1 to 2019B9	
Annex D (informative) Example SCL File	
Bibliography	184
Figure 1 – Breaker Failure Protection from IEC TR 61850-7-500	20
Figure 2 – Breaker Failure Application	20
Figure 3 – 1 ½ Breaker Functions	21
Figure 4 – Breaker Failure Application	22
Figure 5 – Power Measurement Application	23
Figure 6 – 3 Transformer Differential Protection	24
Figure 7 – 3 Transformer Winding Overcurrent Protection	25
Figure 8 – 3 Transformer Voltage Control	26
Figure 9 – Absolute PathName Examples with Object Reference	27
Figure 10 – Data Flow specification with SourceRefs inside a Function	29
Figure 11 – Data Flow specification for data exchange between Functions	29
Figure 12 – Example of a SourceRef and ControlRef connection	33
Figure 13 – Example of open SourceRef and ControlRef	33
Figure 14 – Example of a connected SourceRef and ControlRef (source and controlled are set)	34
Figure 15 – Example of an implemented SourceRef and ControlRef(extRefAddr and extCtrlAddr are set)	35
Figure 16 – SubscriberLNode and ControllingLNode definition example	36
Figure 17 – SubscriberLNode and ControllingLNode selection example	36
Figure 18 – SubscriberLNode and ControllingLNode resolution example	36
Figure 19 – Example of service specification within a SourceRef element	38
Figure 20 – Example of service specification within a SubscriberLN element	39
Figure 21 – Example of a GooseParameters specification	43
Figure 22 – Example for referencing a GooseParameters	43
Figure 23 – Specification of a binary Wired oriented connection	46
Figure 24 – Specification of a binary Wired oriented connection (visual representation)	46
Figure 25 – Implementation of the LPDI/LPDO	47
Figure 26 – Example of BinaryWiringParameters	48
Figure 27 – Example of Wired Input and Output specification for XCBR	49
Figure 28 – Example of the implementation of the XCBR wiring specification	50
Figure 29 – Specification of an analogue Wired oriented connection	51
Figure 30 – Specification of an analogue Wired oriented connection (visual	
representation)	
Figure 31 – Implementation of an analogue Wired oriented connection specification	
Figure 32 – Example of AnalogueWiringParameters	
Figure 33 – Example of Control Model specification	55

Figure 34 – Example of PTOC Setting Groups specification	56
Figure 35 – Example of array values specification	57
Figure 36 – Example LNodeSpecNaming	59
Figure 37 – Application Template definition with ProcessResource	61
Figure 38 – Application instance with ProcessResource resolution	62
Figure 39 – CB interlocking equation	63
Figure 40 – Application template	63
Figure 41 – Example Application with ProcessResource	64
Figure 42 – Using ProcessResource for SourceRef parameterization	65
Figure 43 – ProcessResource resolution to set SourceRef source	65
Figure 44 – Using ProcessResource with SubscriberLNode	66
Figure 45 – ProcessResource resolution with SubscriberLNode	67
Figure 46 – Example of ProcessResource usage for CBR usage	69
Figure 47 – Example of ProcessResource usage for CT usage	70
Figure 48 – Function and SubFunctions related to the Process Section	71
Figure 49 – 1 1/2 breaker control and protection application	72
Figure 50 – SCL support for Function classification (example)	75
Figure 51 – Example of Function Classification in SCL	76
Figure 52 – Example of Allocation roles with PIU	78
Figure 53 – Example of Allocation roles without Bay Controller CB Interface	79
Figure 54 – Allocation variant use case	80
Figure 55 – Allocation Variant use case representation in XML	81
Figure 56 – Auto recloser multiple allocation example	82
Figure 57 – Variables in the Process Section	83
Figure 58 – Example of variable to manage XCBR prefix	83
Figure 59 – Example of variable to manage specification of functional name	83
Figure 60 – Example of variable to manage DA value	84
Figure 61 – Example of Variable setting directly the Circuit Breaker prefix	86
Figure 62 – Example of Variable value set by an XPath expression	87
Figure 63 – Example of Variables used for Setting Group definition	87
Figure 64 – Behavior description in a Bay	89
Figure 65 – Behavior description location	89
Figure 66 – Example of BehaviorDescription in a single LNode	93
Figure 67 – Example of floating BehaviorDescription	94
Figure 68 – Example P21 BehaviorDescription	95
Figure 69 – Example of ProcessEcho for XCBR.Pos transmission	97
Figure 70 – Example of ProcessEcho for measurement transmission	98
Figure 71 – FSD usage in specification process	100
Figure 72 – SSD Template	101
Figure 73 – IED Allocation	102
Figure 74 – Function Structure mapped to S-IEDs	102
Figure 75 – Process IID workflow	112
Figure 76 – Process ICD with ISD workflow	113

Figure 77 – Process ICD without ISD workflow	113
Figure 78 – Process ICD with ISD from SSD template workflow	113
Figure 79 – BehaviorDescription implementation documentation	114
Figure 80 – Multiple LNodes instantiation by one LN	115
Figure 81 – specification of binary inputs function	116
Figure 82 – Process ICD content with mapping documentation	117
Figure 83 – Single LNode implemented by multiple LN	118
Figure 84 – SourceRef implementation in same LN documentation	119
Figure 85 – SourceRef implementation in a GGIO documentation	120
Figure 86 – SourceRef implementation in a TCTR documentation	120
Figure 87 – Example of SourceRef mapping to real IED	121
Figure 88 – Example of real IED used to implement SourceRef	122
Figure 89 – Concept of mapping SourceRef to ExtRef	123
Figure 90 – SourceRef definition based on DO	124
Figure 91 – Using granularity for better SourceRef creation	124
Figure 92 – SourceRef definition for same DO at DA level	125
Figure 93 – SourceRef definition at DO level for reporting communication	125
Figure 94 – 1 to 1 implementation of SourceRef	126
Figure 95 – Using intAddr for mapping SourceRef to ExtRef	127
Figure 96 – Match documentation between ExtRef and SourceRef	127
Figure 97 – Choosing position ExtRef as mapping of SourceRef	128
Figure 98 – Example of same intAddr	129
Figure 99 – Using extRefAddr for SMV mapping	129
Figure 100 – Use of extCtrlAddr example	130
Figure 101 – Deviating DO/DA mapping documentation	131
Figure 102 – SED exchange	131
Figure 103 – Engineering rights rules from IEC 61850-6:2009+AMD2:2024	132
Figure 104 – SCC/SED concept	132
Figure 105 – SCC concept	133
Figure 106 – project UUID	134
Figure 107 – SCC workflow example	139
Figure 108 – use of UUIDs to handle SED flows	141
Figure 109 – use of UUIDs to handle SCC flows	142
Figure 110 – Handling of minRequestSCDFileVersion/Revision example	143
Figure 111 – Combining SCC and SED workflows	144
Figure 112 – Example of exchange between main/fork project and other system	145
Figure 113 – Combined example SCC/SED	146
Figure 114 – Use of SCC for extension engineering	147
Figure 115 – Single line of project process example	148
Figure 116 – Project execution flow	
Figure 117 – interaction between main and for projects	149
Figure 118 – Use of SCC for exchange between main and fork project	149
Figure 119 – example of project flow between engineering and commissioning	

Figure 120 – Example of SCC process	150
Figure 121 – Response of a process ICD to a system specification or IED specification template	151
Figure 122 – Response of a process IID to a project SCD	151
Figure 123 – Response of a process IID to an ISD/SSD	152
Figure 124 – Response of a process ICD to an SSD with allocation roles	152
Figure 125 – Global overview	153
Figure 126 – Reference to FSD	154
Figure 127 – Reference to ASD	155
Figure 128 – Use of references	155
Figure 129 – UUID example 1	159
Figure 130 – UUID example 2	159
Figure 131 – UUID example 3	160
Figure 132 – Scenario 1	160
Figure 133 – Zoom on ASD	161
Figure 134 – Subscenario 1	162
Figure 135 – Zoom on SSD Template	163
Figure 136 – Subscenario 2	163
Figure 137 – Zoom on ISD	164
Figure 138 – Subscenario 3	164
Figure 139 – Zoom on SCD	165
Figure 140 – Subscenario 4	165
Figure 141 – Scenario 2	166
Figure 142 – Scenario 3	. 166
Table 1 – Reference between published versions of the standard and related	
namespace name	
Table 2 – Attributes of the IEC 61850-6-100:2019B9 XML namespace	
Table 3 – Attributes of the IEC 61850-6-100:2019C1 XML namespace	
Table 4 – Attributes of the IEC/TR 61850-90-30 SSD example	
Table 5 – Conditions for presence of attributes within a context	
Table 6 – Attributes of the SourceRef element	
Table 7 – Management of the ExtRef with SourceRef	
Table 8 – Attributes of the ControlRef element	
Table 9 – Attributes of SubscriberLNode	
Table 10 – Attributes of ControllingLNode	
Table 11 – SpecServiceType	
Table 12 – Attributes of the L2CommParameter element	
Table 13 – Attributes of the L3IPv4CommParameter element	
Table 14 – Attributes of the L3IPv6CommParameter element	
Table 15 – Attributes of the GooseParameters element	
Table 16 – Attributes of the SMVParameters element	
Table 17 – Attributes of the ReportParameters element	
Table 18 – Attributes of the LogParameters element	45

Table 19 – Attributes of the BinaryWiringParameters element	48
Table 20 – Attributes of the AnalogueWiringParameters element	52
Table 21 – DOS element attributes	54
Table 22 – SDS element attributes	54
Table 23 – DAS element attributes	54
Table 24 – LNodeSpecNaming element attributes	59
Table 25 – Attributes of the ProcessResource element	68
Table 26 – Attributes of the Resource element	68
Table 27 – Attributes of the PowerSystemRelation element	73
Table 28 – Attributes of the FunctionRef element	74
Table 29 – Attributes of the FunctionCatRef element	74
Table 30 – Attributes of the FunctionCategory and SubCategory element	75
Table 31 – Attributes of the AllocationRole element	77
Table 32 – Attributes of the Variable element	84
Table 33 – Attributes of the VariableApplyTo element	85
Table 34 – Attributes of the BehaviorDescription element	90
Table 35 – isSpecification and isSimulation attributes usage	90
Table 36 – Attributes of the BehaviorReference element	90
Table 37 – Attributes of the InputVar element	92
Table 38 – Attributes of the OutputVar element	92
Table 39 – Attributes of the ProcessEcho element	96
Table 40 – Attributes of the FunctionTemplate and SubFunctionTemplate element	100
Table 41 – ISD file content	104
Table 42 – Process ICD file content	108
Table 43 – Process IID file content	110
Table 44 – Attributes of the Project element	134
Table 45 – Attributes of the ProjectProcessReference element	134
Table 46 – Attributes of the CheckoutID element	135
Table 47 – Rules for SCC scenarios	137
Table 48 – Rules for SED scenarios	140
Table B.1 – Service section of ISD File	170

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 90-30: IEC 61850 Function Modelling in SCL

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
 consensus of opinion on the relevant subjects since each technical committee has representation from all
 interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 61850 has been prepared by subcommittee 10: Guidelines for IEC 61850 Function Modelling in SCL, of IEC technical committee TC 57: WG10. It is a Technical Report.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
57/2693/DTR	57/2734/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61850 series, published under the general title *Communication networks and systems for power utility automation*, can be found on the IEC website.

NOTE The following print types are used:

• SCL attributes and elements: in italic type.

This IEC technical report includes Code Components i.e. components that are intended to be directly processed by a computer. Such content is any text found between the markers <CODE BEGINS> and <CODE ENDS>, or otherwise is clearly labelled in this standard as a Code Component.

The purchase of this IEC technical report carries a copyright license for the purchaser to sell software containing Code Components from this standard to end users either directly or via distributors, subject to IEC software licensing conditions, which can be found at: http://www.iec.ch/CCv1.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

The notion of Function is omnipresent in IEC 61850. Here are some examples:

- IEC 61850-1 introduces Functions on page 16 together with Logical Nodes and physical devices as core elements of the IEC 61850 reference architecture.
- IEC 61850-5 contains a comprehensive list of Functions in the Substation Domain and their relationship to Logical Nodes and PICOMs.
- IEC 61850-7-500 describes the use of the information model for devices and Functions of IEC 61850 in applications in substation automation systems.
- Functions play a central role in Logic Modelling.
- Basic Application Profiles (BAP) (IEC TR 61850-7-6) defines "Application Functions" as the chosen context for defining a profile.

The Function element requires an appropriate embedding in the formal SCL model and additional Guidelines on how to use it for the formalized, SCL based specification and description of power automation systems.

In Edition 1 of IEC 61850-6 the SCL element Function was limited to the Station Level and intended to be a container for information outside the immediate substation control & protection domain. E.g. "Door Alarm".

Since Edition 2 of IEC 61850-6, Functions are essential elements of the Substation and or Process Section. They serve as containers for Logical Nodes and can have internal structures (SubFunctions).

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 90-30: IEC 61850 Function Modelling in SCL

1 Scope

1.1 General

This part of IEC 61850, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.

It addresses how to:

- decompose functions in SCL
- show function classifications in SCL
- relate functions with the SCL Substation and Process Section
- relate functions to Logical Nodes and IEDs/Specification IEDs
- present information flow between functions in a hardware/implementation independent way
- position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
- consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6

The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.

The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.

The System Configuration process is described in IEC 61850-6.

Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.

In addition, this document introduces:

- Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
- New variants of SCL files: ISD (IED Specification Description) and FSD (Function Specification Description),
- Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

1.2 Published versions of this standard and related namespace name

This technical report defines an SCL namespace extension. This allows adding these extensions to existing SCL files without requiring a new SCL schema release. They will be included in a future SCL release.

This technical report also defines SSD examples of files showing the possibilities offered by this new document. The content of the examples is defined in IEC_61850-90-30.SSD.2024A2.Full.

The SCL namespace extension is defined under IEC 61850-6-100 identifier which is a common extension between this document and IEC TR 61850-7-6:2024 (Edition 2).

The SCL namespace extension is proposed in two versions based on:

- IEC 61850-6:2018 edition 2 amendment 1 which has already been used by some experimentation
- IEC 61850-6:2024 edition 2 amendment 2 which defines UUID (Universal Unique IDentifier) used in some proposed extension in this document.

The differences and the management of the two versions is described in Annex C.

Table 1 provides an overview of the references between the published versions of this standard and the related namespace name.

Table 1 – Reference between published versions of the standard and related namespace name

Edition	Publication date	Webstore	Namespace
Edition 1.0	2024-03	IEC 61850-90-30:2023	IEC 61850-6-100:2019B9 for SCL 2.1
Edition 1.0	2024-03	IEC 61850-90-30:2023	IEC 61850-6-100:2019C1 for SCL 2.2

1.3 Identification of the Code Components

1.3.1 IEC 61850-6-100 XML namespace compliant with IEC 61850-6:2018 edition 2 amendment 1

The example associated with this document is an SCL file (SSD) example based on IEC 61850-6-100 2019C1 and IEC 61850-6 2007C5. The content of these examples is defined in Annex D. The parameters which identify the namespace are provided in Table 2:

Table 2 – Attributes of the IEC 61850-6-100:2019B9 XML namespace

Attribute	Content		
	Namespace nameplate		
Namespace Identifier (xmlns)	http://www.iec.ch/61850/2019/SCL/6-100		
Version	2019		
Revision	В		
Release	9		
XSD version header attribute	2019B9		
Recommended reference name	eIEC61850-6-100		
Code Component Name	IEC_61850-6-100.XSD.2019B9.Full		
Namespace dependencies			
includes	http://www.iec.ch/61850/2003/SCL version: 2007 revision: B release: 4		

1.3.2 IEC 61850-6-100 XML namespace compliant with IEC 61850-6:2024 edition 2 amendment 2

The namespace associated with this document is an XML schema (XSD) for an extension to the System Configuration Language (SCL) as defined in IEC 61850-6. The parameters which identify the namespace are provided in Table 3:

Table 3 - Attributes of the IEC 61850-6-100:2019C1 XML namespace

Attribute	Content	
Namespace nameplate		
Namespace Identifier (xmlns)	http://www.iec.ch/61850/2019/SCL/6-100	
Version	2019	
Revision	C	
Release	1	
XSD version header attribute	2019C1	
Recommended reference name	elEC61850-6-100	
CodeComponentName	IEC_61850-6-100.XSD.2019C1.Full	
Namespace dependencies		
includes	http://www.iec.ch/61850/2003/SCL version: 2007 revision: C release: 5	

1.3.3 IEC/TR 61850-90-30 SSD example

The example associated with this document is an SCL file (SSD) example based on IEC 61850-6-100 2019C1 and IEC 61850-6 2007C5. The parameters which identify the namespace are provided in Table 4:

Table 4 – Attributes of the IEC TR 61850-90-30 SSD example

Attribute	Content	
Example nameplate		
Version	2024	
Revision	A	
Release	1	
Code Component Name	IEC_61850-90-30.SSD.2024A1.Full	
Example dependencies		
includes	http://www.iec.ch/61850/2003/SCL version: 2007 revision: C release: 5	
includes	http://www.iec.ch/61850/2019/SCL/6-100 version: 2019 revision: C release: 1	

1.4 Code Component Distribution

1.4.1 General

This document is associated with code components.

Each Code Component is a ZIP package containing at least the electronic representation of the Code Component itself and a file describing the content of the package (IECManifest.xml).

The life cycle of a code component is not restricted to the life cycle of the related publication. The publication life cycle goes through two stages, Version (corresponding to an edition) and Revision (corresponding to an amendment). A third publication stage (Release) allows publication of Code Component in case of urgent fixes of InterOp Tissues, thus without need to publish an amendment.

Consequently, new release(s) of the Code Component may be released, which supersede(s) the previous release, and will be distributed through the IEC TC 57 web site at:

http://www.iec.ch/tc57/supportingdocuments

1.4.2 SCL extension namespace code component

The latest version/release of the document will be found by selecting the file for the code component with the highest value for VersionStateInfo, e.g. IEC_61850-6-100.XSD.{VersionStateInfo}.full.zip.

The SCL extension namespace is available in two version, for compatibility with SCL edition 2.1 or SCL edition 2.2. The VersionStateInfo will differ for both version:

- The version compatible with SCL edition 2.1 will be following 2019Bx where x is the latest release,
- The version compatible with SCL edition 2.2 will be following 2019Cx where x is the latest release.

The Code Component associated with this document is reflecting the XML schema specified in this document formatted in XSD files. It also contains example of IEC 618580-6-100 usage in the context of IEC TR 61850-90-30 and IEC TR 61850-7-6. The list of examples is detailed in the IECManifest.xml file.

The full version is freely accessible on the IEC website for download at http://www.iec.ch/tc57/supportingdocuments but the usage remains under the licensing conditions.

In case of any differences between the downloadable code and the IEC pdf published content, the downloadable code(s) is(are) the valid one; it may be subject to updates. See history files.

1.4.3 SSD example code component

The latest version/release of the SSD examples will be found by selecting the file for the code component with the highest value for VersionStateInfo, e.g. IEC_61850-90-30.SSD.{VersionStateInfo}.full.zip.

The code component associated to this TR is a list of examples packages as ZIP file used as informative. It is available as a full version only. It is freely accessible on the IEC website for download at http://www.iec.ch/tc57/supportdocuments, but the usage remains under the licensing conditions.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61850-6:2009, Communication networks and systems for power utility automation – Part 6: Configuration description language for communication in electrical substations related to IEDs IEC 61850-6:2009/AMD2:2024

IEC 61850-7-2:2010, Communication networks and systems for power utility automation – Part 7-2: Basic information and communication structure – Abstract communication service interface (ACSI)

IEC 61850-7-2:2010/AMD1:2020

IEC 61850-7-4:2010/AMD1:2020

IEC 61850-7-4:2010, Communication networks and systems for power utility automation – Part 7-4: Basic communication structure – Compatible logical node classes and data object classes

IEC TR 61850-7-6:2024, Communication networks and systems for power utility automation – Part 7-6: Guideline for definition of Basic Application Profiles (BAPs) using IEC 61850

IEC TR 61850-7-500, Communication networks and systems for power utility automation – Part 7-500: Basic information and communication structure – Use of logical nodes for modeling application functions and related concepts and guidelines for substations

IEC 61131 (all parts), Programmable controllers